
 

 

 

 

 

 

Solution 

The first thing to do is to define a set of convenient coordinates that describe the system. 

Note that you may have lots of different choices here, but I have chosen to go by according 

to this picture: 

 

 

The position of Earth can be described 

like this: 

 

  

 

 

The key thing to note here is that both r 

and θ change with time (the magnitude 

of r stays constant, but it is a position 

vector, so the direction changes!) 

 

Therefore we have to use the product rule to get the time derivatives of the position 

coordinates (velocities) to be: 

 

 

 

 

The total kinetic energy for Earth is simply: 



 

Then inserting ẋ and 𝑦̇, we get: 

Looking at this expression a bit closer, we can indeed see that it simplifies to a much nicer 

form: 

 

After these simplifications we’re just left with: 

 

The Earth also has a potential energy under the influence of the Sun, namely gravitational 

potential energy in the form:   

 

 

 

 

 

  

The Lagrangian for Earth is therefore: 

 

 



The next thing to do is to define the canonical momenta for both of our generalized 

coordinates (r and θ) through the Lagrangian: 

                       

Then solving them both for the velocities, we get: 

                        

 

The Hamiltonian for our system is: 

  

 

 

And by inserting the velocities and the equation for the Lagrangian: 

 

 

Now we can actually use Hamilton’s equations to find the equations of motion for the Earth  

(we only need the first equations since we already derived the velocities above). 

Here we also get an equation for 

both of the momenta, the first one for pr being: 

  

 

 

Remember the general form of 

the Hamiltonian: 

 

Hamilton’s equations of motion 

 



This particular equation gives us the time derivative of the momentum (i.e. force in 

Newtonian mechanics) associated with the variable r. In analogy to Newtonian mechanics, 

it corresponds to the gravitational force between the Sun and the Earth. 

You might notice the second term being just the regular gravitational force, however 

Hamilton’s equations give us something else too. The first term is actually the centrifugal 

force, which is a fictitious force that only appears to be there in the reference frame of the 

object itself. 

 

Moving on to the momentum associated with θ, we get something interesting there as well. 

Since the Hamiltonian, interestingly enough does not depend on θ at all, we get from 
Hamilton’s equations: 

 

Now think about what this tells us. The momentum associated with θ is a momentum 

associated with rotating an angle or more simply put, the angular momentum. On the 

other hand, the time derivative of something being equal to 0 means that something does 

not change with time (i.e. it stays constant). Therefore, this equation indeed proves the 

conservation of angular momentum for the Earth. 

 

 

 

 

 

 



Solution 

First, we’re going to define a set of generalized coordinates for the system, in particular by 
placing the pendulum in a Cartesian coordinate system (note; there are also other useful 

coordinates, but we’ll choose the regular Cartesian system). 

The pendulum is placed so that the start of the first rod is at the origin. All of the 

parameters we’ll need are as follows:  

It is again useful to describe the positions of both of the pendulum bobs by the angles as 

shown in the picture. For the first bob, the x and y -coordinates, expressed in terms of the 

angle θ, are as follows: 

  

                        (note that y1 has a minus-sign because it               

                     is measured downwards from the origin)   

     

                     

The coordinates for the second bob, on the other hand are: 

 

 

 

 

 



The velocities for each of the coordinates are (note that are r and R are simply the rod 

lengths, i.e. constants): 
 

                                      

                                        
  

 

Now, the kinetic energy for the first bob is: 

 
 

 

 

 

 

 

 

 

 

The kinetic energy for the second bob is a little bit more complicated: 

 

 

 

 

 

 

 

 

 



After expanding those, we can use some of the rules for trigonometric functions to simplify 

the expression: 

 

 

 

 

 

The total kinetic energy of the system is then the sum of the kinetic energies of both bobs: 

 

 

The double pendulum is also in a gravitational field, meaning that both of the bobs have a 

gravitational potential energy, which depends on the height of the bob (the y-coordinate): 

 

 

 

 

 

 

 

The total potential energy of the system is also simply the sum of these two: 

 

 

 

 

 

 



 

The Lagrangian of the system is then: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can now obtain the canonical momenta associated with the angles θ and α, which are: 

 

 

 

 

 

 

 

 

And rearranging them, we get: 

 

 

 

 

 

 

 

 

 

Remember the steps for finding a Hamiltonian: 



 

Now as you can see, the only problem is that both of these equations include both of the 

velocity coordinates. Luckily, in this situation there are two equations with two variables we 

wish to solve for, so we get a system of equations: 

 

 

 

 

 

 

 

 

 

Systems of equations like this are pretty simple to solve. Just insert either one of the 

equations into the other and solve for the variable you wish to. Then do the same for the 

other equation. 

 

After doing that and a fair bit of very tedious algebra, we arrive at these two equations: 

 

 

We are almost done here. As we now have the velocities, we can then construct the 

Hamiltonian for this system, which is: 

 

 

 

 

 

 

 

 



Now it’s only a matter of inserting the velocity equations into this Hamiltonian. This is going 
to get pretty ugly, but by doing it, we get possibly the longest equation ever: 

 

 

This equation looks quite complex, so it might be easier to digest in pieces. We can also see 

how it compares to something much simpler, say a system with only one particle moving in 

the x-direction: 



The red terms are simply the generalized velocities for both of the angles θ and α 

(multiplied by the angular momentum associated with each if them). This is analogous to 

the following term in the Hamiltonian for the single-particle system (except in the above 

one we just have two of these terms): 

 

 

 

 

All of the terms after the red ones come from the Lagrangian. The blue parts are analogous 

to the ”normal” kinetic energy terms you’d typically expect in the Lagrangian, which are in 

the form of 
12𝑚𝑣2. In the Hamiltonian for the simple system, it is these terms (after 

inserting the Lagrangian): 

 

 

 

 

 

The orange part, on the other hand, is kind of interesting. It is actually an extra term that 

comes from the fact that the system has two particles with one of them being dependent 

on the other (the position of the second bob depends on the position of the first one as 

they are attached). This term does not have any particular analogous counterpart in the 

single-particle system. 

 

The green part is simply both of the bobs’ potential energies, which can easily be seen from 

the fact that these two terms are not dependent on the momenta or the velocities, only the 

generalized positions (the angles θ and α). This is exactly what is typical for potential 

energies, only depend on position rather than motion. 

 

The red, blue and orange terms together form the kinetic energy part of the Hamiltonian, 

while the green terms cover the potential energy part. In the simple system case, this is 

analogous to: 

 

 

 

 

 

 

 

 

 



There is one more thing worth noting about the double pendulum. If you’ve ever seen the 
motion of a double pendulum system, it seems extremely chaotic and unpredictable. While 

based on this example, it would theoretically be possible to predict the motion of a double 

pendulum, in practice this is not really the case. 

 

For example, if we wanted to actually predict its motion for even a couple of minutes, even 

that would require insanely accurate measurements about the initial conditions of the 

system. Generally, for any real world systems, the longer the duration we want to get 

accurate mathematical predictions for, the more accurate our knowledge of the initial 

conditions have to be. 

 

 

 

 
 

 

Solution 

This problem is actually quite simple, at least mathematically. You just have to know where 

to start, which is by constructing an explicitly time-dependent Lagrangian. 

 

Now, the Lagrangian is typically implicitly dependent on time, which just means that it is 

dependent on time, but not directly, only through the position and velocity variables. What 

we want now is a Lagrangian that is directly dependent on time (as well as the position and 

velocity): 

 

 



Now it’s only a matter of looking at how the Hamiltonian varies with a Lagrangian like this. 

That is pretty simple. It’s the exact same process we did when deriving Hamilton’s 
equations of motion, so feel free to go back to the article at profoundphysics.com and read 

through that part of you have to. This time there is just one more variable included, which 

will give us a third (but not so commonly used) equation of motion. The Hamiltonian in this 

case is (leaving out the summation sign): 

 

 

 

 

Then, looking at the variance in the Hamiltonian, we get: 

 

 

 

 

 

Notice that this is the exact same thing we had when deriving the equations of motion, 

except for the last part (the term with time), which comes from the explicitly time-

dependent Lagrangian. 

 

Here we can also get some terms to cancel by recalling the definition of the canonical 

momentum and inserting it: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Now, comparing the above expression to the general chain rule for varying the Hamiltonian 

if we only know its variables (this time there is also the explicit time variable): 

 

 

 

 

 

And for the mathematics to hold consistent, we have to have these terms equal each other: 

 

 

 

 

 

 

 

 

 

 

 

 

 

The grey arrows here will just give us the usual Hamiltonian equations of motion. What 

we’re really interested in is the red one, which gives us: 

 

 

 

 

 

Now, the interesting thing here is not so much how we derived or proved this equation, it is 

about what this equation tells us; given that the Lagrangian is explicitly dependent on time, 

the Hamiltonian will also be explicitly dependent on time. The two only differ by a minus-

sign, but the physical implications of this is that they change opposite to one another with 

time. This means that if the value of the Lagrangian was to decrease with time, the 

Hamiltonian would increase with time, and vice versa. 

 

Another interesting implication of this equation is energy conservation. In particular, the 

energy of a system is conserved if the Lagrangian is NOT explicitly time-dependent. This is 

easy to prove with the above equation. The Lagrangian being not explicitly dependent on 

time means that the Lagrangian is only a function of the position and velocity coordinates: 

 

 



Now, as the Lagrangian does not have a direct time variable, the partial derivative with 

respect to time is simply 0: 

 

 

 

 

 

This obviously tells us that the Hamiltonian (total energy) does not change with time. 

Therefore, energy conservation is proven IF the Lagrangian is not explicitly time-dependent. 

 


